as BaSO₄. A typical result of the elemental analysis is: N, 12.00, 12.20, 12.10; Ba, 88.5, 87.0, 87.5%. Calculated values for Ba₃N₄ are: N, 11.95; Ba, 88.05%.

When barium pernitride (5.1 g) was slowly heated up to 250° under nitrogen atmosphere, 260 ml (at 24°) of nitrogen gas (identified by means of a mass spectrometer) was eliminated. Theoretical amount of nitrogen expected according to eq 2 is 270 ml.

The nitrogen content in a barium nitride sample produced according to eq.2 was analyzed by the Kjeldahl method and found to be 6.45 wt % (calculated value of nitrogen in Ba₈N₂ is 6.35%). The barium in Ba₃N₂ was found to be 92.9 wt % (calculated value is 93.6%).

The nitrogen contents in Sr₃N₄ and Ca₃N₄ were determined in a manner exactly analogous to that of Ba₃N₄.

Decomposition of Alkaline Earth Pernitride by Aqueous Acid .---The alkaline earth pernitrides (Ba₃N₄, Ca₃N₄, and Sr₃N₄) were found to react vigorously with aqueous acids and to form metal salts, nitrogen gas, and ammonium salts (eq 3).

A typical experiment can be described as follows. Barium pernitride (7.7 g) was placed in a 50-ml three-neck flask under a dried nitrogen atmosphere and cooled with ice. A large excess of 5% aqueous HCl solution was added slowly dropwise to the flask with stirring. The decomposition of pernitride started immediately, and 385 ml of nitrogen gas was evolved at 27°. The calculated value according to eq 3 is 370 ml. After the decomposition, the ammonia content of the solution was determined by the Kjeldahl method and found to be 0.027 mole (calculated value using eq 3 is 0.030 mole).

Acknowledgment.—The authors are indebted to the U. S. Air Force Cambridge Research Laboratories (AF 19(628) 2359) for partial support of this work.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, CARNEGIE INSTITUTE OF TECHNOLOGY, PITTSBURGH, PENNSYLVANIA

Thermochemistry of Aqueous Pervanadyl and Vanadyl Ions

BY GARY L. BERTRAND, GEORGE W. STAPLETON,¹ CLAUS A. WULFF, AND LOREN G. HEPLER

Received December 27, 1965

In 1952 Latimer² was able to list only free energies of formation for the species of V(IV and V) in aqueous acid. These values were based on a free energy calculated from the solubility of V₂O₅ and the oxidation potential for the $V(IV) = V(V) + e^{-1}$ half-reaction. Subsequent measurements by LaSalle and Cobble³ have provided data for the heat of solution of V_2O_5 and more data for its solubility. Mah and Kelley⁴ have reported a new ΔH_{i}° and derived ΔG_{i}° for V₂O₅ (c).

We have remeasured the heat of solution of V_2O_5 in aqueous acid and have also measured the heat of reduction of V(V) to V(IV), with results being used in several thermodynamic calculations.

Experimental Section

The calorimeter used was patterned after one previously described,5 except that a Leeds and Northrup Mueller G-2 bridge and H.S. galvanometer were used with a nickel resistance thermometer. Also, the thermometer and calibration heater were contained in a glass spiral filled with mineral oil. All of the work reported here was carried out with 950 ml of solution in the calorimeter at $25.0 \pm 0.2^{\circ}$.

Fisher Certified reagent V_2O_5 (100.0%) was leached with 1 M HClO₄ for periods from 1 hr to 1 month. After filtering and washing, the products were dried at 450° and stored in a vacuum desiccator with P2O5. Other samples were prepared by leaching with nitric acid and by thermal decomposition at 450° of ammonium metavanadate from Fisher and Mackay. Direct titration with standard KMnO4 solution showed that these samples had less than 0.1% vanadium in lower oxidation states. Similar titration after reduction of V(V) to V(IV) with HSO3led to calculated compositions in the range $100.1 \pm 0.3\%$ for all samples. Our heat measurements disclosed no thermochemical differences between any of these samples.

Results and Calculations

Although there is poor agreement on values of equilibrium constants relating important species of V(V)and V(IV) in acidic solutions, it does appear that below pH \cong 2 the principal species are the pervanadyl and vanadyl ions represented by $VO_2^+(aq)$ and $VO^{2+}(aq)$. The reaction equation for our measurements of the heats of solution of $V_2O_5(c)$ in HClO₄ is written as

$$V_2O_5(c) + 2H^+(aq) = 2VO_2^+(aq) + H_2O(1)$$
 (1)

All measurements were made with approximately 1-g samples of V_2O_5 being dissolved in 950 ml of HClO₄ to yield solutions about 0.01 M in $VO_2^+(aq)$. Solution times varied from 10 to 20 min, depending on concentration of acid and method of preparation of V₂O₅. Most of the estimated uncertainties (~ 0.1 kcal/mole of V_2O_5) in results given in Table I stem from rather long extrapolations associated with these long reaction times.

TABLE I							
Heats of Solution of $V_2O_5(c)$ in Aqueous $HClO_4$							
	$-\Delta H$, kcal/mole		$-\Delta H$, kcal/mole				
[H+], M	of V_2O_5	$[H^+], M$	of V_2O_5				
0.25	8.25	0.60	7.90,7.85,7.88				
0.35	8.09	0.70	7.94				
0.40	7.98, 8.09	0.80	7.79				
0.50	7.90, 8.15	1.00	7.67, 7.51				

Extrapolation to infinite dilution of the data in Table I leads to $\Delta H^{\circ} = -8.4$ kcal/mole of V₂O₅ for reaction 1. Because of uncertainties associated with this extrapolation to the reference state, the uncertainty in ΔH° is several times that derived from purely experimental uncertainties, possibly being $\sim \pm 0.3$ kcal/ mole of V_2O_5 .

LaSalle and Cobble³ have also determined heats of solution of V_2O_5 (about the same total vanadium concentrations as in our measurements) in HClO₄ from 0.16 to 0.63 M. They reported an extrapolated $\Delta H^{\circ} = -5.78 \pm 0.09$ kcal for reaction 1. Their ΔH° differs from ours by 2.6 kcal. Also, their measured heats became less exothermic with increasing dilution of acid while ours became more exothermic. We are (5) W. F. O'Hara, C. H. Wu, and L. G. Hepler, J. Chem. Educ., 38, 512 (1961).

⁽¹⁾ National Science Foundation Research Participation for High School Teachers.

⁽²⁾ W. M. Latimer, "Oxidation Potentials," Prentice-Hall, Inc., New York, N. Y., 1952. (3) M. J. LaSalle and J. W. Cobble, J. Phys. Chem., 59, 519 (1955).

⁽⁴⁾ A. D. Mah and K. K. Kelley, U. S. Department of the Interior, Bureau of Mines, Report of Investigations, No. 5858, Mines Bureau, Pittsburgh, Pa., 1961.

unable to account for the considerable difference in results, but, because our measurements were made with several samples prepared in different ways, we adopt our $\Delta H^{\circ} = -8.4$ kcal for calculations involving (1).

Combination of our ΔH° for reaction 1 with $\Delta H_{i}^{\circ} = -370.6$ kcal/mole for V₂O₅ from Mah and Kelley⁴ and ΔH_{f}° for H₂O from NBS Circular 500 gives $\Delta H_{i}^{\circ} = -155.3$ kcal/mole for VO₂+(aq).

Latimer estimated $\Delta G^{\circ} \cong 2.5$ kcal for reaction 1 from solubility data. More recently, LaSalle and Cobble³ have reviewed previous solubility measurements and made their own measurements. It now appears that the best ΔG° for (1) is 1.9 kcal from the data of LaSalle and Cobble. Combination of this ΔG° with our ΔH° leads to $\Delta S^{\circ} = -34.5$ cal/(deg mole of V₂O₅) for (1). Further combination with appropriate entropies⁶ leads to $S_2^{\circ} = -9.9$ cal/deg mole and $\Delta G_f^{\circ} = -140.3$ kcal/mole for VO₂+(aq).

We have measured the heat of reaction of $VO_2^+(aq)$ with an excess of aqueous ferrous perchlorate solution. The calorimetric reaction equation is

$$Fe^{2+}(concd aq) + VO_{2}+(aq) + 2H^{+}(aq) = Fe^{3+}(aq) + VO^{2+}(aq) + H_{2}O^{-}(2)$$

All measurements were made with carefully weighed samples (~ 0.2 g) of V₂O₅ dissolved in 950 ml of HClO₄ of concentrations indicated in Table II. Reactions were carried out with 10–25-ml portions of standardized Fe²⁺ solutions ($\sim 0.7 M$) so that final concentrations of Fe³⁺(aq) were in the range 0.005–0.015 *M*, while V(IV and V) concentrations were about 0.002 *M*. Separate determination of the heat of dilution of the concentrated Fe²⁺ solution as in eq 3 below permitted calculation of the desired ΔH for reaction 4 below, with results given in Table II.

TABLE II

Heats of Reduction of VO_2^+ with $Fe^{2+}(aq)$							
[H +], M	Moles of ${ m VO_2^{+} imes 10^3}$	Moles of Fe ²⁺ \times 10 ³	$-Q_2$, cal	$-Q_{\delta}$, cal	$-\Delta H_4,$ kcal/mole		
0.1	1.921	6.75	39.5	1.9	19.6		
0.1	1.974	16.88	44.1	5.3	19.7		
0.3	1.877	6.23	37.0	1.0	19.2		
0.3	2.201	6.23	43.5	1.1	19.3		
0.3	2.134	6.75	46.2	4.1	19.7		
0.6	2.396	7.58	48.8	2.0	19.5		
0.6	2.193	6.75	49.4	6.7	19.5		

$$Fe^{2+}(concd) = Fe^{2+}(aq)$$
(3)

$$Fc^{2+}(aq) + VO_{2}^{+}(aq) + 2H^{+}(aq) = Fe^{3+}(aq) + VO^{2+}(aq) + H_{2}O$$
 (4)

In eq 2-4 we have used the abbreviation (aq) to indicate that the preceding species are present at low concentrations within the ranges given above. Since all reacting species except H⁺ were present at concentrations less than 0.02 M, reasonably accurate estimates of heats of dilution lead to $\Delta H^{\circ} = -19.7$ kcal/mole for (4). Combination of this ΔH° with our $\Delta H_{\rm f}^{\circ}$ for VO₂⁺(aq) and other $\Delta H_{\rm f}^{\circ}$ values from NBS Circular 500 leads to $\Delta H_{\rm f}^{\circ} = -116.3$ kcal/mole for VO²⁺(aq).

(6) K. K. Kelley and E. G. King, U. S. Department of the Interior, Bureau of Mines, Bulletin, No. 592, U. S. Government Printing Office, Washington, D. C., 1961. We have also measured the heat of reaction of V_2O_5 (c) with an excess of Fe²⁺(aq) in HClO₄ as represented by $V_2O_5(c)$ + 2Fe²⁺(aq) + 6H⁺(aq) = 2VO²⁺(aq) +

$$2 Fe^{3+}(aq) + 3H_2O$$
 (5)

Because of the slowness of the reaction, the best we can report is that $\Delta H_5^{\circ} = -47 \pm 1$ kcal/mole of V₂O₅. This value is consistent with our earlier results but is not precise enough to warrant further calculations.

Combination of the previously quoted $\Delta G_{\rm f}^{\circ}$ for ${\rm VO}_2^+({\rm aq})$ with the standard potential² for the ${\rm VO}^{2+}$ - ${\rm VO}_2^+$ half-reaction leads to $\Delta G_{\rm f}^{\circ} = -106.7$ kcal/mole for ${\rm VO}^{2+}({\rm aq})$. Combination of this $\Delta G_{\rm f}^{\circ}$ with $\Delta H_{\rm f}^{\circ} = -116.3$ kcal/mole and entropy data⁶ leads to $\tilde{S}_2^{\circ} = -32$ cal/deg mole for ${\rm VO}^{2+}({\rm aq})$.

The VO²⁺–VO₂⁺ potential has been determined at two temperatures,² which permits calculation of ΔH_f° and \bar{S}_2° for VO²⁺(aq) by combination with the corresponding values for VO₂⁺(aq). The results are in reasonable agreement with our values but are much less certain because of the notorious uncertainties associated with deriving slopes from lines based on only two points a few degrees apart. Another approximate approach to these values is by means of the temperature dependence of the equilibrium reduction of VO₂⁺ to VO²⁺ by Fe²⁺ (ref 7). Although the relevant equilibrium quotients are for solutions of high ionic strength, we have estimated the corrections that permit calculation of heats and entropies in reasonable agreement with our results.

We judge the values summarized in Table III to be the best that are presently available for $VO_2^+(aq)$ and $VO^{2+}(aq)$.

	TAB	le III			
SUMMARY OF THERMODYNAMIC DATA					
	$\Delta G_{f i}^{\circ},$ kcal/mole	$\Delta {H_{\mathrm{f}}}^{\circ}$, kcal/mole	$\overline{S}_2^\circ,$ cal/deg mole		
$VO_2^+(aq)$	-140.3	-155.3	-9.9		
VO ²⁺ (aq)	-106.7	-116.3	-32		

Acknowledgment.—We thank the National Science Foundation for support of this research.

(7) W. C. E. Higginson and A. G. Sykes, J. Chem. Soc., 2841 (1962).

CONTRIBUTION FROM REACTION MOTORS DIVISION, THIOKOL CHEMICAL CORPORATION, DENVILLE, NEW JERSEY

The Chemistry of Alane. XII.¹ The Lithium Tetrahydroalanate–Triethylamine Complex

By Robert Ehrlich² and George Rice

Received January 10, 1966

In a recent publication by Peters,⁸ the reaction of lithium tetrahydroalanate, LiAlH₄, with trimethyl-

Paper XI: R. Ehrlich, A. R. Young, II, G. Rice, J. Dvorak, P. Shapiro, and H. F. Smith, J. Am. Chem. Soc., 88, 858 (1966).
 Propellants Laboratory, Feltman Research Laboratories, Picatinny

Arsenal, Dover, N. J. Requests for reprints should be sent to A. Marcellis, Reaction Motors Division, Thiokol Chemical Corp., Denville, N J.

(3) F. M. Peters, Can. J. Chem., 42, 1755 (1964).